The Chevalley–Gras formula over global fields
نویسندگان
چکیده
منابع مشابه
Quadratic Forms over Global Fields
1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...
متن کاملFactoring Polynomials over Global Fields
We prove polynomial time complexity for a now widely used factorization algorithm for polynomials over the rationals. Our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.
متن کاملReduction theory over global fields
The paper contains an exposition of the basic results on reduction theory in reductive groups over global fields, in the adelic language. The treatment is uniform: number fields and function fields are on an equal footing.
متن کاملPreperiodic Points of Polynomials over Global Fields
Given a global field K and a polynomial φ defined over K of degree at least two, Morton and Silverman conjectured in 1994 that the number of K-rational preperiodic points of φ is bounded in terms of only the degree of K and the degree of φ. In 1997, for quadratic polynomials over K = Q, Call and Goldstine proved a bound which was exponential in s, the number of primes of bad reduction of φ. By ...
متن کاملMultiple Zeta Values over Global Function Fields
Abstract. Let K be a global function field with finite constant field Fq of order q. In this paper we develop the analytic theory of a multiple zeta function Zd(K; s1, . . . , sd) in d independent complex variables defined over K. This is the function field analog of the Euler-Zagier multiple zeta function ζd(s1, . . . , sd) of depth d ([Z1]). Our main result is that Zd(K; s1, . . . , sd) has a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2020
ISSN: 2118-8572
DOI: 10.5802/jtnb.1133